Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 204, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374195

RESUMEN

Unicellular eukaryotes represent tremendous evolutionary diversity. However, the molecular mechanisms underlying this diversity remain largely unexplored, partly due to a limitation of genetic tools to only a few model species. Paramecium caudatum is a well-known unicellular eukaryote with an unexpectedly large germline genome, of which only two percent is retained in the somatic genome following sexual processes, revealing extensive DNA elimination. However, further progress in understanding the molecular mechanisms governing this process is hampered by a lack of suitable genetic tools. Here, we report the successful application of gene knockdown and protein localization methods to interrogate the function of both housekeeping and developmentally regulated genes in P. caudatum. Using these methods, we achieved the expected phenotypes upon RNAi by feeding, and determined the localization of these proteins by microinjection of fusion constructs containing fluorescent protein or antibody tags. Lastly, we used these methods to reveal that P. caudatum PiggyMac, a domesticated piggyBac transposase, is essential for sexual development, and is likely to be an active transposase directly involved in DNA cleavage. The application of these methods lays the groundwork for future studies of gene function in P. caudatum and can be used to answer important biological questions in the future.


Asunto(s)
Paramecium caudatum , Paramecium caudatum/genética , Paramecium caudatum/metabolismo , Interferencia de ARN , Genoma , Transposasas/genética , Transposasas/metabolismo , Tareas del Hogar
2.
Front Nutr ; 9: 931060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978960

RESUMEN

Obesity induced by a high-fat diet (HFD) is an increasing global health problem, leading to many metabolic syndromes. As the emerging food additive rich in tea polyphenols, theanine, caffeine, and so on, matcha green tea has gained more and more popularity for its outstanding potential in ameliorating metabolic disorders. This study investigated the composition and antioxidant activity of matcha green tea and further explored its effects on gut-liver axis homeostasis in an HFD-induced obese mouse model. Male (7-8 weeks old) C57BL/6J mice were divided into four groups with the following dietary supplementation for 8 weeks: a normal chow diet (NCD), a normal chow diet+1.0% matcha (NCM), a high-fat diet (HFD), and a high-fat diet+1.0% matcha (HFM). The results demonstrated that matcha green tea ameliorated the development of obesity, lipid accumulation, and hepatic steatosis induced by HFD. Subsequently, dietary matcha supplementation restored the alterations in fecal bile acid profile and gut microbial composition. Meanwhile, the levels of mRNA expression in hepatocytes demonstrated that matcha intervention made significant regulatory on the multiple metabolic pathways of hosts involved in glucose, lipid, and bile acid metabolism. These findings present new evidence for matcha green tea as an effective nutritional strategy to mitigate obesity and relevant metabolic disorders through the gut-liver axis.

3.
Front Plant Sci ; 13: 849658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592578

RESUMEN

Increasing evidence shows that plant Endophytes play a crucial role in the fitness and productivity of hosts. Surface sterilization is an indispensable process before high-throughput sequencing (HTS) and tissue separation of plant endophytes, but its potential impact on the composition and diversity of endophytes has rarely been investigated. In the present work, the influence of sodium hypochlorite (NaClO) on the diversity of endophytic bacteria and fungi in leaves and stems of tea plants was investigated. We found that the diversity of bacterial endophytes was significantly affected by the concentration of NaClO as well as the pretreatment time. Pretreatment with 0.5% NaClO for 8 min and 2.0% NaClO for 3 min were suitable for the tea plant leaves and stems, respectively, but the effects of NaClO on the diversity of fungal endophytes were limited according to the results from HTS. Regardless of NaClO sterilization, most of the endophytes in tissues, such as the dominant taxa, could not be Isolated by using the regular culture-dependent approaches. Collectively, our results demonstrated that the pretreatment with NaClO should be modified to precisely understand the diversity of endophytes from different tissues of tea plants and also indicate that more attention should be paid to establish specific culture-dependent protocols for the isolation of plant endophytes.

4.
Nutrients ; 13(6)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204055

RESUMEN

Lately, matcha green tea has gained popularity as a beverage and food additive. It has proved to be effective in preventing obesity and related metabolic syndromes. However, the underlying mechanisms of its control effects against non-alcoholic fatty liver disease (NAFLD) are complicated and remain elusive. In the present study, we performed an in vivo experiment using male C57BL/6 mice fed with a high-fat diet and simultaneously treated with matcha for six weeks. Serum biochemical parameters, histological changes, lipid accumulation, inflammatory cytokines, and relevant indicators were examined. Dietary supplementation of matcha effectively prevented excessive accumulation of visceral and hepatic lipid, elevated blood glucose, dyslipidemia, abnormal liver function, and steatosis hepatitis. RNA sequencing analyses of differentially expressed genes in liver samples indicated that matcha treatment decreased the activity of lipid droplet-associated proteins and increased the activity of cytochrome P450 enzymes, suggesting improved metabolic capacity and liver function. The current study provided evidence for new dietary strategies based on matcha supplementation to ameliorate lipotoxicity-induced obesity and NALFD.


Asunto(s)
Antioxidantes/administración & dosificación , Metabolismo de los Lípidos/fisiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/terapia , , Animales , Glucemia/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Dislipidemias/metabolismo , Inflamación , Hígado/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...